Sand won't save you this time

No.14304000 ViewReplyOriginalReport
A chemist friend told me about this famous article years ago and i just remembered. It's a classic.

https://www.science.org/content/blog-post/sand-won-t-save-you-time


>The compound also a stronger oxidizing agent than oxygen itself, which also puts it into rare territory. That means that it can potentially go on to “burn” things that you would normally consider already burnt to hell and gone, and a practical consequence of that is that it’ll start roaring reactions with things like bricks and asbestos tile. It’s been used in the semiconductor industry to clean oxides off of surfaces, at which activity it no doubt excels.

>I’ll let the late John Clark describe the stuff, since he had first-hand experience in attempts to use it as rocket fuel. From his out-of-print classic Ignition! we have:
”It is, of course, extremely toxic, but that's the least of the problem. It is hypergolic with every known fuel, and so rapidly hypergolic that no ignition delay has ever been measured. It is also hypergolic with such things as cloth, wood, and test engineers, not to mention asbestos, sand, and water-with which it reacts explosively. It can be kept in some of the ordinary structural metals-steel, copper, aluminium, etc.-because of the formation of a thin film of insoluble metal fluoride which protects the bulk of the metal, just as the invisible coat of oxide on aluminium keeps it from burning up in the atmosphere. If, however, this coat is melted or scrubbed off, and has no chance to reform, the operator is confronted with the problem of coping with a metal-fluorine fire. For dealing with this situation, I have always recommended a good pair of running shoes.”

https://youtu.be/M4l56AfUTnQ