Hey can you guys verify if I did these proofs by induction practice problems correct? Just going to type out simplified versions:
Part 1:
(3n-4)=(n/2)(3n-5)
(3(1)-4)=((1)/2)(3(1)-5)
3-4=1/2(3-5)
-1=1/2(-2)
-1=-1
Part 2:
(3n-4)=(n/2)(3n-5)
3k-4=(k/2)(3k-5)
(3k-4)+(3(k+1)-4)=((k+1)/2)(3(k+1)-5)
(k/2)(3k-5)+(3(k+1)-4)=((k+1)/2)(3(k+1)-5)
3k^2/2-5k/2+3k-1=((k+1)/2)(3k-2)
3k^2/2-5k/2+3k-1=(3k(k+1)/2)-(2(k+1)/2)
3k^2/2-5k/2+3k-1=3k^2/2+3k/2-k-1
3k^2/2-5k/2+6k/2-1=3k^2/2+3k/2-k-1
3k^2/2+k/2-1=3k^2/2+3k/2-k-1
3k^2/2+k/2-1=3k^2+3k/2-2k/2-1
3k^2/2+k/2-1=3k^2+k/2-1
-------------------------------------------------------------------
Part 1:
(2n-1)=n^2
2(1)-1=(1)^2
2-1=1
1=1
Part 2:
(2n-1)=n^2
(2k-1)=k^2
(2k-1)+(2(k+1)-1)=(k+1)^2
(2k-1)+(2(k+1)-1)=(k+1)^2
k^2+2k+1=k^2+2k+1
-------------------------------------------------------------------
Part 1:
(4n-1)=n(2n+1)
(4(1)-1)=(1)(2(1)+1)
4-1=2+1
3=3
Part 2:
(4n-1)=n(2n+1)
(4k-1)=k(2k+1)
(4k-1)+(4(k+1)-1)=(k+1)(2(k+1)+1)
k(2k+1)+(4(k+1)-1)=(k+1)(2k+3)
k(2k+1)+(4(k+1)-1)=2k^2+5k+3
2k^2+k+4k+3=2k^2+5k+3
2k^2+5k+3=2k^2+5k+3
Part 1:
(3n-4)=(n/2)(3n-5)
(3(1)-4)=((1)/2)(3(1)-5)
3-4=1/2(3-5)
-1=1/2(-2)
-1=-1
Part 2:
(3n-4)=(n/2)(3n-5)
3k-4=(k/2)(3k-5)
(3k-4)+(3(k+1)-4)=((k+1)/2)(3(k+1)-5)
(k/2)(3k-5)+(3(k+1)-4)=((k+1)/2)(3(k+1)-5)
3k^2/2-5k/2+3k-1=((k+1)/2)(3k-2)
3k^2/2-5k/2+3k-1=(3k(k+1)/2)-(2(k+1)/2)
3k^2/2-5k/2+3k-1=3k^2/2+3k/2-k-1
3k^2/2-5k/2+6k/2-1=3k^2/2+3k/2-k-1
3k^2/2+k/2-1=3k^2/2+3k/2-k-1
3k^2/2+k/2-1=3k^2+3k/2-2k/2-1
3k^2/2+k/2-1=3k^2+k/2-1
-------------------------------------------------------------------
Part 1:
(2n-1)=n^2
2(1)-1=(1)^2
2-1=1
1=1
Part 2:
(2n-1)=n^2
(2k-1)=k^2
(2k-1)+(2(k+1)-1)=(k+1)^2
(2k-1)+(2(k+1)-1)=(k+1)^2
k^2+2k+1=k^2+2k+1
-------------------------------------------------------------------
Part 1:
(4n-1)=n(2n+1)
(4(1)-1)=(1)(2(1)+1)
4-1=2+1
3=3
Part 2:
(4n-1)=n(2n+1)
(4k-1)=k(2k+1)
(4k-1)+(4(k+1)-1)=(k+1)(2(k+1)+1)
k(2k+1)+(4(k+1)-1)=(k+1)(2k+3)
k(2k+1)+(4(k+1)-1)=2k^2+5k+3
2k^2+k+4k+3=2k^2+5k+3
2k^2+5k+3=2k^2+5k+3