>>14177786These are easy
sin(x)sin(48)sin(46)sin(74) = sin(68-x)sin(38)sin(22)sin(64)
Expanding sin(68-x) = sin(68)cos(x) - sin(x)cos(68) gives:
sin(x)sin(48)sin(46)sin(74) = [sin(68)cos(x) - sin(x)cos(68)]sin(38)sin(22)sin(64)
Dividing by cos(x) gives:
tan(x)sin(48)sin(46)sin(74) = [sin(68) - tan(x)cos(68)]sin(38)sin(22)sin(64)
Move the tans to the left to get:
tan(x)[sin(48)sin(46)sin(74) + cos(68)sin(38)sin(22)sin(64)] = sin(68)sin(38)sin(22)sin(64)
Isolate tan to get:
tan(x) = sin(68)sin(38)sin(22)sin(64)/[sin(48)sin(46)sin(74) + cos(68)sin(38)sin(22)sin(64)]
arctan to get the answer x = 18