I made a new Shcrödinger eqation, this time purely real. It is derived by E^2=(p^2/2m+V)^2 and fourier real series.
[code:lit]-\hbar^2\frac{\partial^2 }{\partial t^2} \Phi =\frac{\hbar^4}{4m^2}\frac{\partial^4 }{\partial x^4} \Phi-\frac{\hbar^2}{m}\frac{\partial^2 }{\partial x^2} \Phi+V^2\Phi [/code:lit]
discuss
[code:lit]-\hbar^2\frac{\partial^2 }{\partial t^2} \Phi =\frac{\hbar^4}{4m^2}\frac{\partial^4 }{\partial x^4} \Phi-\frac{\hbar^2}{m}\frac{\partial^2 }{\partial x^2} \Phi+V^2\Phi [/code:lit]
discuss